Setup and Usage#
To use the Hyperion API, start by setting up the client with an access token. Then, define a payload to specify your query parameters and call the appropriate method to fetch the data.
The examples below show how to configure the client, apply filters to refine your request, and handle the results efficiently.
⮞ Setup the client.
from synmax.hyperion import HyperionApiClient, ApiPayload
access_token = 'your access token goes here'
client = HyperionApiClient(access_token=access_token)
For a more detailed guide on setting up the Hyperion client, please see the Quickstart page.
⮞ Use parameters to narrow down your request.
payload = ApiPayload(start_date='2021-05-01', end_date='2022-06-25', sub_region=['S LA', 'West - TX'])
Tip
Narrow down your request to receive a faster response. Using no parameters will fetch the entire dataset which may take a very long time.
⮞ Call the function.
result_df = client.well_completion(payload)
Endpoint |
Function Name |
---|---|
completions |
|
dailyfrackedfeet |
|
dailyproduction |
|
ducsbyoperator |
|
fraccrews |
|
longtermforecast |
|
operatorclassification |
|
pipelinescrapes |
|
pipelinescrapestatus |
|
productionbywell |
|
regions |
|
rigs |
|
shorttermforecast |
|
shorttermforecastdeclines |
|
shorttermforecasthistory |
|
shorttermforecasthistorydates |
|
shorttermforecastaggregatedhistory |
|
TILs |
|
wells |
|
⮞ Print the results or save them for later.
# Print the entire response as a string.
print(result_df.to_string())
# Create a CSV file from the output.
result_df.to_csv('output.csv')
# Print the number of items per column.
print(result_df.count())
For more information on outputting to different formats, please see the pandas DataFrame documentation.