Setup and Usage#

To use the Hyperion API, start by setting up the client with an access token. Then, define a payload to specify your query parameters and call the appropriate method to fetch the data.

The examples below show how to configure the client, apply filters to refine your request, and handle the results efficiently.

⮞ Setup the client.

from synmax.hyperion import HyperionApiClient, ApiPayload
access_token = 'your access token goes here'
client = HyperionApiClient(access_token=access_token)

For a more detailed guide on setting up the Hyperion client, please see the Quickstart page.

⮞ Use parameters to narrow down your request.

payload = ApiPayload(start_date='2021-05-01', end_date='2022-06-25', sub_region=['S LA', 'West - TX'])

Tip

Narrow down your request to receive a faster response. Using no parameters will fetch the entire dataset which may take a very long time.

⮞ Call the function.

result_df = client.well_completion(payload)

Endpoint

Function Name

completions

well_completion(payload)

dailyfrackedfeet

daily_fracked_feet(payload)

dailyproduction

daily_production(payload)

ducsbyoperator

ducs_by_operator(payload)

fraccrews

frac_crews(payload)

longtermforecast

long_term_forecast(payload)

operatorclassification

fetch_operator_classification()

pipelinescrapes

pipeline_scrapes(payload)

pipelinescrapestatus

fetch_pipeline_scrape_status()

productionbywell

production_by_well(payload)

regions

fetch_regions()

rigs

rigs(payload)

shorttermforecast

short_term_forecast(payload)

shorttermforecastdeclines

short_term_forecast_declines(payload)

shorttermforecasthistory

short_term_forecast_history(payload)

shorttermforecasthistorydates

short_term_forecast_history_dates()

shorttermforecastaggregatedhistory

short_term_forecast_aggregated_history(payload)

TILs

fetch_tils()

wells

wells(payload)

⮞ Print the results or save them for later.

# Print the entire response as a string.
print(result_df.to_string())

# Create a CSV file from the output.
result_df.to_csv('output.csv')

# Print the number of items per column.
print(result_df.count())

For more information on outputting to different formats, please see the pandas DataFrame documentation.