/stfaggregatedhistory#
This endpoint returns historic versions of the ShortTermForecasts on a sub-region aggregated level. The sub-region aggregated data is more tractable for higher level analysis in comparison to the more detailed and much larger well-level ShortTermForecastHistory dataset.
Note
This endpoint offers sub-region aggregated versions of all historical SynMax ShortTermForecasts going back in three days increments until 2021-01-15
Each version of the ShortTermForecast can be uniquely identified by the forecast_run_date.
Incomplete state data is accounted for in our forecasts. For example, if state data is incomplete for a month prior to the
start_date
, we fill in the missing data before each forecasting.
Warning
A throttling mechanism with a rate limit of 30 requests per minute has been implemented for this endpoint. This is temporary and may be adjusted in the future.
Endpoint#
POST |
https://hyperion.api.synmax.com/v3/stfaggregatedhistory |
Usage#
Python#
- short_term_forecast_aggregated_history(forecast_run_date=None, sub_region=[None], start_date=None, end_date=None)#
Returns historic versions of the ShortTermForecasts on a sub-region aggregated level.
Object returned is a pandas DataFrame.
⮞ Setup the client.
from synmax.hyperion import HyperionApiClient, ApiPayload
access_token = 'your access token goes here'
client = HyperionApiClient(access_token=access_token)
For a more detailed guide on setting up the Hyperion client, please see the Quickstart page.
⮞ Use parameters to narrow down your request.
payload = ApiPayload(start_date='2021-05-01', end_date='2022-06-25', sub_region=['S LA', 'West - TX'])
Tip
Narrow down your request to receive a faster response. Using no parameters will fetch the entire dataset which may take a very long time.
⮞ Call the function.
result_df = client.short_term_forecast_aggregated_history(payload)
⮞ Print the results or save them for later.
# Print the entire response as a string.
print(result_df.to_string())
# Create a CSV file from the output.
result_df.to_csv('output.csv')
# Print the number of items per column.
print(result_df.count())
For more information on outputting to different formats, please see the pandas DataFrame documentation.
Parameters#
Query#
Parameter |
Type |
Description |
Example |
---|---|---|---|
end_date |
string |
Limit search to an end date. Date formatting - [“YYYY-MM-DD”] |
|
forecast_run_date |
string |
Date of nearest forecast. Date formatting - [“YYYY-MM-DD”] |
“2022-06-01” |
start_date |
string |
Limit search to a start date. Date formatting - [“YYYY-MM-DD”] |
|
sub_region |
string array |
Limit search by a list of subregions (clusters of several counties forming a major producing basin). |
|
This API does not use predefined filter aggregation values. Instead, you can specify filters using the parameters below:
{
"end_date": "2024-11-05",
"forecast_run_date": "2024-11-05",
"pagination": {
"page_size": 0,
"start": 0,
"total_count": 0
},
"start_date": "2024-11-05",
"sub_region": [
"Central - TX"
]
}
Response#
Parameter |
Type |
Description |
Example |
---|---|---|---|
date |
string |
Date selected for forecast (unsynced). Date formatting - [“YYYY-MM-DD”] |
“2022-11-01” |
forecast_run_date |
string |
Date of nearest forecast (unsynced). Date formatting - [“YYYY-MM-DD”] |
“2022-06-01” |
gas_daily |
float |
Average rate of gas production expressed per day (in BCF/day). |
23.842 |
oil_daily |
float |
The amount of oil produced in a single day (in BBLS, or barrels). |
112.9570761 |
sub_region |
string |
Aggregation of several counties, typically representing a major producing basin. |
“S LA” |
page_size |
integer |
Number of items returned in a single page |
1000 |
start |
integer |
Starting index for the data returned in this request. An index of 0 means that the current data begins from the first item in the complete dataset. |
0 |
total_count |
integer |
Total number of items in the dataset. This is important for calculating how many pages of data exist. |
38258749 |
Note
Unsynced data in the date column provide a date at the start of the month. However, the actual reported date is for the end of the month.
For example, if the reported date is “2022-1-10”, this means the data pertains to the month of January and was actually reported on “2022-01-31”.
This means that you should ideally interpret the reported date as representing the whole month and not just the specific date at the start of the month.
Responses#
Normal Output#
date |
forecast_run_date |
gas_daily |
oil_daily |
sub_region |
---|---|---|---|---|
2023-01-01 |
2024-08-25 |
2.872823725 |
0.1201064193548387 |
Central - TX |
2023-01-01 |
2024-08-27 |
2.872823725 |
0.1201064193548387 |
Central - TX |
2023-01-01 |
2024-08-30 |
5.74564745 |
0.1201064193548387 |
Central - TX |
2023-01-01 |
2024-09-02 |
2.872823725 |
0.1201064193548387 |
Central - TX |
2023-01-01 |
2024-09-05 |
2.872823725 |
0.1201064193548387 |
Central - TX |
2023-01-01 |
2024-09-09 |
2.872823725 |
0.1201064193548387 |
Central - TX |
2023-01-01 |
2024-09-09 |
2.872823725 |
0.1201064193548387 |
Central - TX |
Note
Output data will return as “null” when input data is invalid or does not exist.
Filtering Output#
Filtering by…
{
"end_date": "2024-11-05"
}
date |
forecast_run_date |
gas_daily |
oil_daily |
sub_region |
---|---|---|---|---|
2024-06-01 |
2024-07-04 |
5.60554929 |
0.0245461 |
Haynesville - TX |
2024-06-01 |
2024-07-07 |
5.605290339 |
0.024545366666666665 |
Haynesville - TX |
2024-06-01 |
2024-07-10 |
5.609807544 |
0.024551733333333332 |
Haynesville - TX |
2024-06-01 |
2024-07-13 |
5.607349803 |
0.024738625100072586 |
Haynesville - TX |
2024-06-01 |
2024-07-16 |
5.607349803 |
0.024738625100072607 |
Haynesville - TX |
2024-06-01 |
2024-07-19 |
5.607349803 |
0.024738625100072586 |
Haynesville - TX |
{
"start_date": "2024-07-05"
}
date |
forecast_run_date |
gas_daily |
oil_daily |
sub_region |
---|---|---|---|---|
2024-08-01 |
2023-03-30 |
2.456272239 |
0.0245461 |
Central - TX |
2024-08-01 |
2023-04-02 |
2.457173245 |
0.024545366666666665 |
Central - TX |
2024-08-01 |
2024-04-05 |
2.457305399 |
0.024551733333333332 |
Central - TX |
2024-08-01 |
2024-04-08 |
2.457070443 |
0.024738625100072586 |
Central - TX |
2024-08-01 |
2024-06-16 |
2.463665834 |
0.024738625100072607 |
Central - TX |
{
"forecast_run_date": "2024-07-01"
}
date |
forecast_run_date |
gas_daily |
oil_daily |
sub_region |
---|---|---|---|---|
2023-01-01 |
2024-07-01 |
2.640860326 |
0.06607983870967742 |
Central - TX |
2023-02-01 |
2024-07-01 |
2.546733256 |
0.065498 |
Central - TX |
2023-03-01 |
2024-07-01 |
2.636371468 |
0.06579422580645161 |
Central - TX |
2023-04-01 |
2024-07-01 |
2.651483577 |
0.06511886666666666 |
Central - TX |
2023-05-01 |
2024-07-01 |
2.627692634 |
0.0628178064516129 |
Central - TX |
2023-06-01 |
2024-07-01 |
2.623905351 |
0.0608143 |
Central - TX |
{
"sub_region": "Central - TX"
}
date |
forecast_run_date |
gas_daily |
oil_daily |
sub_region |
---|---|---|---|---|
2023-01-01 |
2024-07-01 |
2.640860326 |
0.06607983870967742 |
Central - TX |
2023-01-01 |
2024-07-04 |
2.640860326 |
0.06607983870967742 |
Central - TX |
2023-01-01 |
2024-07-07 |
2.640860326 |
0.06607983870967742 |
Central - TX |
2023-01-01 |
2024-07-10 |
2.640860326 |
0.06607983870967742 |
Central - TX |
2023-01-01 |
2024-07-13 |
2.640860326 |
0.06607983870967742 |
Central - TX |
2023-01-01 |
2024-07-16 |
2.637669381 |
0.06616029032258064 |
Central - TX |
Tip
To better explore using the aggregation functionality interactively, consider using our Excel Add-in. By familiarizing yourself with the available options, you can more efficiently query and process the data for your specific needs. To learn how to use the SynMax Excel Add-in, please refer to our Excel Add-in Documentation.